Synthesis and self-assembly of DNA-chromophore hybrid amphiphiles.
نویسندگان
چکیده
DNA based spherical nanostructures are one of the promising nanostructures for several biomedical and biotechnological applications due to their excellent biocompatibility and DNA-directed surface addressability. Herein, we report the synthesis and amphiphilicity-driven self-assembly of two classes of DNA (hydrophilic)-chromophore (hydrophobic) hybrid amphiphiles into spherical nanostructures. A solid-phase "click" chemistry based modular approach is demonstrated for the synthesis of DNA-chromophore amphiphiles. Various spectroscopic and microscopic analyses reveal the self-assembly of the amphiphiles into vesicular and micellar assemblies with the corona made of hydrophilic DNA and the hydrophobic chromophoric unit as the core of the spherical nanostructures.
منابع مشابه
Diamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملFabrication of hybrid chromophoric amphiphile/silica nanocomposite-based light emitting devices with enhanced performance
Organic semiconductors show efficient electroluminescence which has led to their commercialization in light-emitting diodes (LEDs), however, they have been marred by the thorniest problem of solid-state quenching. Here, we report the synthesis and characterization of two fluorene-based blue amphiphile emitters containing triphenylamine or anthracene side groups and demonstrate formation of thei...
متن کاملThe role of spacers on the self-assembly of DNA aptamer-amphiphiles into micelles and nanotapes.
The self-assembly of single-stranded DNA (ssDNA) aptamer-amphiphiles was influenced by the choice of spacer used to link the hydrophobic tail and aptamer headgroup. Aptamer-amphiphiles without spacers or with hydrophilic spacers formed globular micelles while amphiphiles with hydrophobic spacers formed bilayer nanotapes, which are the first such structures formed by DNA-amphiphiles.
متن کاملDNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
DNA nanotubes were created using molecular self-assembly of single-stranded DNA (ssDNA)-amphiphiles composed of a hydrophobic dialkyl tail and polycarbon spacer and a hydrophilic ssDNA headgroup. The nanotube structures were formed by bilayers of amphiphiles, with the hydrophobic components forming an inner layer that was shielded from the aqueous solvent by an outer layer of ssDNA. The nanotub...
متن کاملSelf-assembly: from amphiphiles to chromophores and beyond.
Self-assembly has been recognised as a ubiquitous aspect of modern chemistry. Our understanding and applications of self-assembly are substantially based on what has been learned from biochemical systems. In this review, we describe various aspects of self-assembly commencing with an account of the soft structures that are available by assembly of surfactant amphiphiles, which are important sci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 14 29 شماره
صفحات -
تاریخ انتشار 2016